Gordian Distance and Complete Alexander Neighbors

Ana Wright

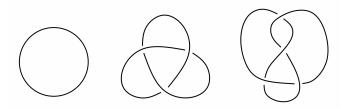
April 25, 2023

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Knot Theory

Definition

A **knot** is a smooth embedding of the circle S^1 in the 3-sphere S^3 considered up to ambient isotopy.

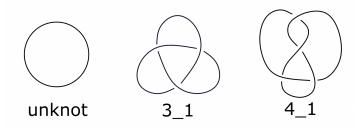


◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Knot Invariants

Definition

The **crossing number** of a knot K is the minimal number of crossings in any diagram of K.



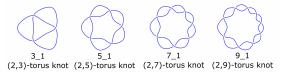
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Knot Invariants

Definition

The **unknotting number** of a knot K is the minimal number of crossing changes required to transform K into the unknot.

The unknotting number of a (p, q)- torus knot is $\frac{(p-1)(q-1)}{2}$ so there exist knots with arbitrarily large unknotting number.

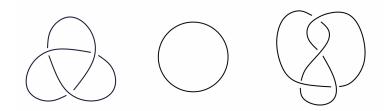


The unknotting number is unknown for many small knots.

Knot Invariants

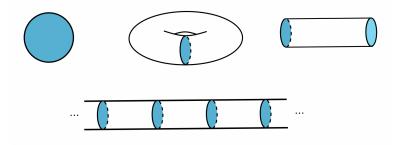
Definition

The **Gordian distance** between two knots K and K' is the minimal number of crossing changes necessary to go from a diagram of K to a diagram of K'.



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let *K* be a knot in S^3 . We can build the infinite cyclic cover of $S^3 \setminus K$ by cutting along an orientable 2-manifold with boundary $K \cong S^1$ (a Seifert surface of *K*) in S^3 .

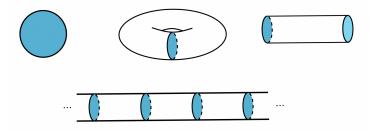


イロト 不良 とくほ とくほう 二日

The Alexander Polynomial

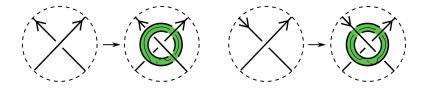
Definition

The **Alexander polynomial** $\triangle_K(t)$ of a knot K is the determinant of a presentation matrix (known as an **Alexander matrix**) for $H_1(X_{\infty})$ as a module over $\mathbb{Z}[t, t^{-1}]$ where t is a covering transformation along the infinite cyclic cover X_{∞} of $S^3 \setminus K$ from one lift of the complement of a Seifert surface of K in S^3 to the next adjacent lift.



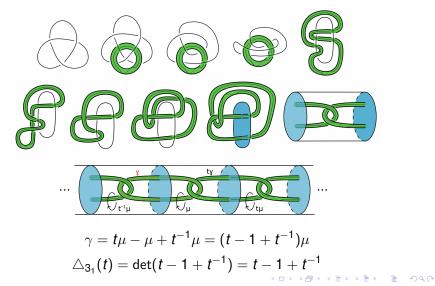
Dehn Surgery

K can be transformed into the unknot with a series of n crossing changes where n is the unknotting number of K.

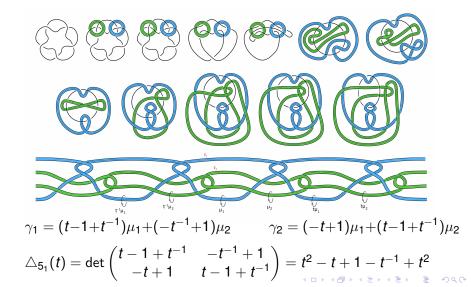


▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

The Alexander Polynomial of the Trefoil



The Alexander Polynomial of 5₁



Alexander Polynomial

Definition

The **determinant** det(*K*) of a knot *K* is $|\triangle_{K}(-1)|$.

Definition

The **algebraic unknotting number** of a knot K is the minimal number of crossing changes required to transform K into a knot with trivial Alexander polynomial.

・ロ・・ 中・ ・ 日・ ・ 日・ ・ 日・ うらる

Characterization of the Alexander Polynomial

Every Alexander polynomial can be written as $p(t) \in \mathbb{Z}[t, t^{-1}]$ such that

1 $p(1) = \pm 1$ and **2** $p(t^{-1}) = p(t)$.

Conversely, every such polynomial is the Alexander polynomial of some knot.

к	$ riangle_{\mathcal{K}}(t)$	
\bigcirc	1	
_1 6	$t - 1 + t^{-1}$	
_1 ({})	$t - 3 + t^{-1}$	
_1 {}	$t^2 - t + 1 - t^{-1} + t^{-2}$	
_2 🛞	$2t - 3 + 2t^{-1}$	

Theorem (Kondo 1978, [2])

For any Alexander polynomial p(t), there exists a knot K with unknotting number one such that $\Delta_{K}(t) = p(t)$.

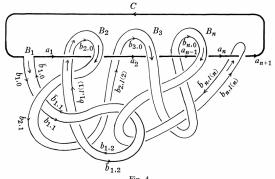


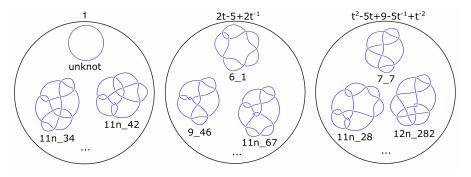
Fig. 4

< □ > < □ > < □ > < □ > < □ > < □ > = □

Question: Does there exist a nontrivial Alexander polynomial a(t) such that for any Alexander polynomial b(t), there exist a pair of knots K_a and K_b which are one crossing change apart such that $\triangle_{K_a}(t) = a(t)$ and $\triangle_{K_b}(t) = b(t)$?

Answer (Kawauchi 2011, [1]): Yes! This is the case for any Alexander polynomial a(t) which can be written in the form $a(t) = c(t)c(t^{-1})$ for some Laurent polynomial c(t).

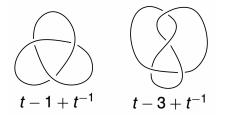
For example, $-2t + 5 - 2t^{-1} = (2t - 1)(2t^{-1} - 1)$ is a slice type Alexander polynomial, so given any Alexander polynomial q(t), there exists a pair of knots one crossing change apart realizing q(t) and $-2t + 5 - 2t^{-1}$.



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Question: Does there exist a pair of Alexander polynomials a(t) and b(t) such that any two knots K_a and K_b where $\triangle_{K_a}(t) = a(t)$ and $\triangle_{K_b}(t) = b(t)$ are at least two crossing changes apart?

Answer (Kawauchi 2011, [1]): Yes! For example, the Alexander polynomials of the trefoil and figure-eight knot.



(日) (日) (日) (日) (日) (日) (日)

Complete Alexander Neighbors

Definition

A knot *K* is a **complete Alexander neighbor** if for any Alexander polynomial p(t), there exists a knot *K'* such that *K* and *K'* are one crossing change apart and $\triangle_{K'}(t) = p(t)$.

- Kondo's result tells us that the unknot is a complete Alexander neighbor.
- Kawauchi's second result tells us that not every knot is a complete Alexander neighbor. For example, the trefoil and figure-eight knot are not complete Alexander neighbors.

Question: Does there exist a complete Alexander neighbor with nontrivial Alexander polynomial?

Lemma (Nakanishi & Okada, Propositions 5 and 6 in [5])

Let *K* be a knot with unknotting number *n* and let $A_K(t)$ be an Alexander matrix of *K* obtained through a collection of *n* unknotting Dehn surgeries. Then a Laurent polynomial p(t) is the Alexander polynomial of some knot *K'* one crossing change away from *K* if and only if there exist Laurent polynomials $r_1(t), ..., r_n(t)$, and m(t) such that

• $m(t) = m(t^{-1}), m(1) = \pm 1, and r_i(1) = 0$ for all $1 \le i \le n$, and

2
$$p(t) = \pm \det \begin{pmatrix} r_1(t^{-1}) \\ A_K(t) & \vdots \\ r_n(t^{-1}) \\ r_1(t) & \dots & r_n(t) & m(t) \end{pmatrix}$$

Lemma (Nakanishi & Okada, Case n = 1 of Propositions 5 and 6 in [5])

Let K be a knot with unknotting number one. Then a Laurent polynomial p(t) is the Alexander polynomial of some knot K' one crossing change away from K if and only if there exist Laurent polynomials r(t) and m(t) such that

•
$$m(t) = m(t^{-1}), m(1) = \pm 1, r(1) = 0 \text{ and}$$

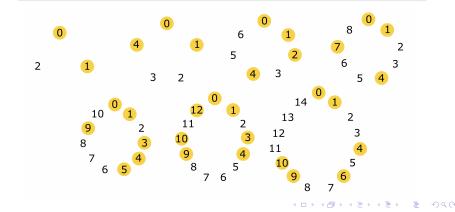
• $p(t) = \pm \det \begin{pmatrix} \bigtriangleup_{K}(t) & r(t^{-1}) \\ r(t) & m(t) \end{pmatrix} = \pm m(t) \bigtriangleup_{K}(t) \mp r(t) r(t^{-1})$

So, if K and K' are one crossing change apart and K has unknotting number one, then

$$\det(K') = \pm m(-1) \det(K) \mp (r(-1))^2.$$

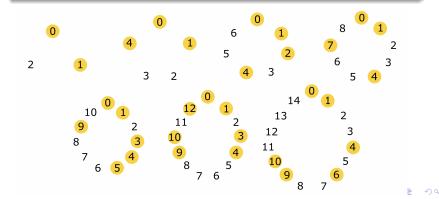
Definition

An integer *q* is a **quadratic residue** mod *n* if there exists an integer *x* such that $q \equiv x^2 \mod n$.



Lemma

Let n > 1 be an odd integer. Then n is composite or $n \equiv 1 \mod 4$ if and only if there exists some integer d such that both d and -d are quadratic nonresidues mod n.



Theorem (W.)

Let *K* be a knot with unknotting number 1, where det(K) > 1and where det(K) is composite or $det(K) \equiv 1 \mod 4$. Then *K* is not a complete Alexander neighbor.

К	$ riangle_{\mathcal{K}}(t)$	det(K)	unknotting number
3_1 5	$t - 1 + t^{-1}$	3	1
4_1	$t - 3 + t^{-1}$	5	1
5_1	$t^2 - t + 1 - t^{-1} + t^{-2}$	5	2
5_2	$2t - 3 + 2t^{-1}$	7	1
6_1	$2t - 5 + 2t^{-1}$	9	1

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

Proposition (Kawauchi, Corollary 4.2 from [1])

Let p be any prime number, and n, ℓ integers coprime to p. If p is an odd prime, then assume that p is coprime to 1 - 4n and that 1 - 4n is a quadratic nonresidue mod p. Consider a set of Alexander polynomials

$$S_{p,n,\ell} = \{n(t+t^{-1})+1-2n\} \\ \cup \{(n+\ell p^{2s+1})(t+t^{-1})+1-2(n+\ell p^{2s+1})|s \in \mathbb{N}_0\}$$

and let $a, b \in S_{p,n,\ell}$ such that $a \neq b$. Then for any knots K_a, K_b such that $\triangle_{K_a} = a$ and $\triangle_{K_b} = b$, we have that K_a and K_b must have Gordian distance at least two.

Theorem (W.)

An Alexander polynomial of breadth 2, $q(t) = n(t + t^{-1}) + 1 - 2n$ is contained in $S_{p,n,\ell}$ for some p, n, and ℓ as defined in Corollary 4.2 from [1] if and only if 1 - 4n is not a square.

К	$ riangle_{\kappa}(t)$	$n(t+t^{-1})+1-2n$	1 – 4 <i>n</i>
3_1	$t - 1 + t^{-1}$	$(t+t^{-1})-1$	-3
4_1	$t - 3 + t^{-1}$	$-(t+t^{-1})+3$	5
5_1	$t^2 - t + 1 - t^{-1} + t^{-2}$		
5_2	$2t - 3 + 2t^{-1}$	$2(t+t^{-1})-3$	-7
6_1	$2t - 5 + 2t^{-1}$	$-2(t+t^{-1})+5$	9
0_1 CJ	2l-5+2l		

200

Corollary

Let *K* be a knot with a breadth 2 Alexander polynomial $\triangle_K(t) = n(t + t^{-1}) + 1 - 2n$. If *K* has unknotting number one or 1 - 4n is not a square, then *K* is not a complete Alexander neighbor.

Let *K* be a knot with unknotting number one and $\triangle_{K}(t) = n(t + t^{-1}) + 1 - 2n$. Then

$$\det(\mathcal{K}) = egin{cases} 1-4n & n \leq -1 \ 4n-1 & n \geq 1 \end{cases}$$

In the case where $n \le -1$, $det(K) \equiv 1 \mod 4$. In the case where $n \ge 1$, 1 - 4n is not a square.

・ロト・西ト・西ト・日・ つんの

Let K be a knot.

- If K has algebraic unknotting number greater than one (which applies to 1,546 of the 2,977 prime knots with crossing number 12 or less), or
- If K has unknotting number one and determinant which is composite or congruent to 1 mod 4 (which applies to 384 of the 2,977 prime knots with crossing number 12 or less), or
- if *K* has Alexander polynomial of breadth 2 $\triangle_K(t) = n(t + t^{-1}) + 1 - 2n$ where *K* has unknotting number one or 1 - 4n is not a square (which applies to 29 of the 2,977 prime knots with crossing number 12 or less)

Then K is not a complete Alexander neighbor. All together, this eliminates 1,944 of the 2,977 prime knots with 12 crossings or fewer.

Future Directions

Recall:

Lemma (Nakanishi & Okada, Propositions 5 and 6 in [5])

Let *K* be a knot with unknotting number *n* and let $A_K(t)$ be an Alexander matrix of *K* obtained through a collection of *n* unknotting Dehn surgeries. Then a Laurent polynomial p(t) is the Alexander polynomial of some knot *K'* one crossing change away from *K* if and only if there exist Laurent polynomials $r_1(t), ..., r_n(t)$, and m(t) such that

• $m(t) = m(t^{-1}), m(1) = \pm 1, and r_i(1) = 0$ for all $1 \le i \le n$, and

2
$$p(t) = \pm \det \begin{pmatrix} r_1(t^{-1}) \\ A_K(t) & \vdots \\ r_n(t^{-1}) \\ r_1(t) & \dots & r_n(t) & m(t) \end{pmatrix}$$

Future Directions

Conjecture

Let *K* be a knot with algebraic unknotting number *n*. Then there exists an Alexander matrix $A_K(t)$ obtained through a collection of *n* Dehn surgeries which transform *K* into a knot with trivial Alexander polynomial. Then a Laurent polynomial p(t) is the Alexander polynomial of some knot *K'* one crossing change away from *K* if and only if there exist Laurent polynomials $r_1(t), ..., r_n(t)$, and m(t) such that

• $m(t) = m(t^{-1}), m(1) = \pm 1, and r_i(1) = 0$ for all $1 \le i \le n$, and

2
$$p(t) = \pm \det \begin{pmatrix} r_1(t^{-1}) \\ A_K(t) & \vdots \\ r_n(t^{-1}) \\ r_1(t) & \dots & r_n(t) & m(t) \end{pmatrix}$$

Future Directions

Conjecture

Let *K* be a knot with algebraic unknotting number one, where $det(K) \ge 3$ and where det(K) is composite or $det(K) \equiv 1 \mod 4$. Then *K* is not a complete Alexander neighbor.

Conjecture

Let *K* be a knot whose Alexander polynomial $\triangle_{K}(t)$ has breadth 2. Then *K* is not a complete Alexander neighbor.

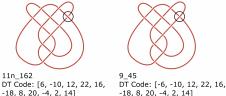
イロト 不良 とくほ とくほう 二日

Obstructions From Unknotting Number One

Recall that by Nakanishi & Okada in [5], if K and K' are one crossing change apart and K has unknotting number one, then

$$\det(K') = \pm m(-1)\det(K) \mp (r(-1))^2$$

so det(K') is a quadratic residue mod det(K).



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Determinant: 55 Determinant: 23

Obstructions From Unknotting Number One

Theorem (W.)

The knots $11n_{162}$, $12n_{805}$, $12n_{814}$, $12n_{844}$, and $12n_{856}$ have unknotting number greater than one.

Lickorish's Obstruction

Definition

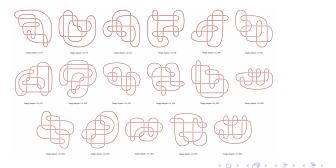
Let *M* be an oriented 3-manifold where $H_1(M)$ is finite. Then the **linking form** of *M* is $\lambda : H_1(M) \times H_1(M) \to \mathbb{Q}/\mathbb{Z}$ as defined below. Let $[\alpha], [\beta] \in H_1(M)$ represented by 1-cycles α and β in *M* respectively. Then $n\alpha$ bounds a disk *D* for some integer *n*. Define $\lambda([\alpha], [\beta]) = \frac{1}{n}i(D, \beta)$ where $i(D, \beta)$ is the intersection number of *D* and β .

Lemma (Lickorish, Lemmas 1 and 2 in [3])

If *K* is a knot with unknotting number one, then $S^3 \setminus K$ is obtained by $\pm \frac{\det K}{2}$ -surgery on a knot in S^3 and $H_1(S^3 \setminus K)$ is cyclic with a generator *g* such that $\lambda(g,g) = \frac{2}{\det K} \in \mathbb{Q}/\mathbb{Z}$.

Comparing Obstructions

Of the prime knots up to 13 crossings, there are 17 examples where changing some crossing in the DT code recorded in KnotInfo [4] yields a knot one crossing change away which satisfies Nakanishi & Okada's condition on determinants to show that the unknotting number must be greater than one, but Lickorish's obstruction does not apply.



Bibliography

A. Kawauchi.

On the alexander polynomials of knots with gordian distance one.

Topology and its Applications, 159(4):948–958, 2012.

H. Kondo.

Knots of unknotting number 1 and their Alexander polynomials.

Osaka Journal of Mathematics, 16(2):551 – 559, 1979.

W. B. R. Lickorish.

The unknotting number of a classical knot. *Contemporary Mathematics*, 44:117–121, 1985.

C. Livingston and A. H. Moore. Knotinfo: Table of knot invariants. URL: http://knotinfo.math.indiana.ædu; October 2000